Research on Postcuring Parameters Effect on the Properties of Fiberglass-Reinforced Silicone Resin Coil Bobbin

Author:

He Hongmei1,He Qiqi1,Gao Hongchen1,Hu Wei1,Xue Song1

Affiliation:

1. School of Manufacturing Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China

Abstract

With the growing demand for insulation parts in extreme service environments, such as nuclear power, aviation, and other related fields, fiberglass-reinforced silicone resin (FRSR) has become a popular choice due to its exceptional physical and chemical properties in high-temperature and electromagnetic working environments. To enhance the performance of FRSR molded parts that can adapt to more demanding extreme environments, the oven postcuring process parameters on thermal stability and mechanical properties of the bobbin were investigated. The curing behavior of FRSR was analyzed by using thermogravimetric analysis (TGA) and the differential scanning calorimetry (DSC) method, and the bobbins were manufactured based on the testing results. Subsequently, the bobbins were oven postcured at different conditions, and the heat resistance and mechanical properties were analyzed by TGA and tensile tests. The results revealed that the tensile strength of the bobbin increased by 122%, and the weight loss decreased by 0.79% at 350 °C after baking at 175 °C for 24 h. The optimal process parameters for producing bobbins to meet the criteria of nuclear installations were determined to be a molding temperature of 120 °C, molding pressure of 50 MPa, pressure holding time of 3 min, oven postcuring temperature of 175 °C, and postcuring time of 24 h. The molded products have passed the thermal aging performance test of nuclear power units.

Funder

Doctoral Fund of Southwest University of Science and Technology

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3