Comparing Activation Functions in Machine Learning for Finite Element Simulations in Thermomechanical Forming

Author:

Pantalé Olivier1ORCID

Affiliation:

1. Laboratoire Génie de Production, Institut National Polytechnique/Ecole Nationale d’Ingénieurs de Tarbes, Université de Toulouse, 47 Av d’Azereix, F-65016 Tarbes, France

Abstract

Finite element (FE) simulations have been effective in simulating thermomechanical forming processes, yet challenges arise when applying them to new materials due to nonlinear behaviors. To address this, machine learning techniques and artificial neural networks play an increasingly vital role in developing complex models. This paper presents an innovative approach to parameter identification in flow laws, utilizing an artificial neural network that learns directly from test data and automatically generates a Fortran subroutine for the Abaqus standard or explicit FE codes. We investigate the impact of activation functions on prediction and computational efficiency by comparing Sigmoid, Tanh, ReLU, Swish, Softplus, and the less common Exponential function. Despite its infrequent use, the Exponential function demonstrates noteworthy performance and reduced computation times. Model validation involves comparing predictive capabilities with experimental data from compression tests, and numerical simulations confirm the numerical implementation in the Abaqus explicit FE code.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference37 articles.

1. Abaqus (1989). Reference Manual, Hibbitt, Karlsson and Sorensen Inc.

2. Modeling of flow stress of 42CrMo steel under hot compression;Lin;Mater. Sci. Eng. A,2009

3. A critical analysis of plastic flow behaviour in axisymmetric isothermal and Gleeble compression testing;Bennett;Comput. Mater. Sci.,2010

4. Thermo-mechanical simulation using gleeble system-advantages and limitations;Kumar;J. Metall. Mater. Sci.,2016

5. Refining constitutive relation by integration of finite element simulations and Gleeble experiments;Yu;J. Mater. Sci. Technol.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3