Endophytic Fungal Infection of Meadow Fescue in the Driftless Area of the Upper Mississippi River Valley: Impacts on Agronomic Fitness

Author:

Casler Michael D.12,Waldron Blair L.3ORCID

Affiliation:

1. U.S. Dairy Forage Research Center, USDA-ARS, Madison, WI 53706-1108, USA

2. Department of Agronomy, University of Wisconsin, 1575 Linden Dr., Madison, WI 53706-1514, USA

3. Forage and Range Research, USDA-ARS, UMC 6300, Logan, UT 84322-6300, USA

Abstract

Meadow fescue, Schedonorus pratensis (Huds.) P. Beauv., has recently been discovered as a common but previously unknown pasture grass in the Driftless Area of the upper Mississippi River Valley, USA. Preliminary data also indicated that many meadow fescue pastures were infected with an endophytic fungus, Epichloë uncinata (W. Gams, Petrini & D. Schmidt) Leuchtm. & Schardl. Therefore, the objective of this study was to determine if the endophyte impacts agronomic fitness of the host meadow fescue. Meadow fescue plants from eight farm sites were intensively sampled, and endophyte infection levels were determined to range from 82 to 95%. Paired endophyte-infected (E+) and endophyte-free (E−) meadow fescue subpopulations from each collection site were then created, and were subsequently compared for greenhouse and field drought tolerance, forage mass, and persistence under frequent defoliation. There was no impact of the endophyte under a wide range of drought conditions for either greenhouse or field studies. Furthermore, there was a small forage-mass-enhancement effect in the E+ subpopulation for only one of the eight collection sites. The only consistent effect was an average of 9% increased ground cover (persistence) in endophyte-infected meadow fescue under frequent defoliation. As per other studies, enhanced root growth, fungal-disease resistance, and/or reduced insect feeding could be mechanisms for this increased survivorship. We conclude that the meadow fescue endophytes present in the Driftless Area do not help protect their host from drought or provide any consistent forage-growth enhancement; however, we found evidence that the endophyte provides some protection against frequent defoliation at low residual sward heights.

Funder

U.S. Dairy Forage Research Center, Madison, WI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3