A Novel Activity Recognition System for Alternative Control Strategies of a Lower Limb Rehabilitation Robot

Author:

Yang TaoORCID,Gao Xueshan,Gao Rui,Dai Fuquan,Peng Jinmin

Abstract

Robot-aided training strategies that allow functional, assist-as-needed, or challenging training have been widely explored. Accurate activity recognition is the basis for implementing alternative training strategies. However, some obstacles to accurate recognition exist. First, scientists do not yet fully understand some rehabilitation activities, such as abnormal gaits and falls; thus, there is no standardized feature for identifying such activities. Second, during the activity identification process, it is difficult to reasonably balance sensitivity and specificity when setting the threshold. Therefore, we proposed a multisensor fusion system and a two-stage activity recognition classifier. This multisensor system integrates explicit information such as kinematics and spatial distribution information along with implicit information such as kinetics and pulse information. Both the explicit and implicit information are analyzed in one discriminant function to obtain a detailed and accurate recognition result. Then, alternative training strategies can be implemented on this basis. Finally, we conducted experiments to verify the feasibility and efficiency of the multisensor fusion system. The experimental results show that the proposed fusion system achieves an accuracy of 99.37%, and the time required to prejudge a fall is approximately 205 milliseconds faster than the response time of single-sensor systems. Moreover, the proposed system also identifies fall directions and abnormal gait types.

Funder

State Key Laboratory of Robotics and Systems

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3