Elemental Composition of Biochar Obtained from Agricultural Waste for Soil Amendment and Carbon Sequestration

Author:

Wijitkosum Saowanee,Jiwnok Preamsuda

Abstract

For an agricultural country such as Thailand, converting agricultural waste into biochar offers a potential solution to manage massive quantities of crop residues following harvest. This research studied the structure and chemical composition of biochar obtained from cassava rhizomes, cassava stems and corncobs, produced using a patented locally-manufactured biochar kiln using low-cost appropriate technology designed to be fabricated locally by farmers. The research found that cassava stems yielded the highest number of Brunauer-Emmett-Teller (BET) surface area in the biochar product, while chemical analysis indicated that corncobs yielded the highest amount of C (81.35%). The amount of H in the corncob biochar was also the highest (2.42%). The study also showed biochar produced by slow pyrolysis was of a high quality, with stable C and low H/C ratio. Biochar’s high BET surface area and total pore volume makes it suitable for soil amendment, contributing to reduced soil density, higher soil moisture and aeration and reduced leaching of plant nutrients from the rhizosphere. Biochar also provides a conducive habitat for beneficial soil microorganisms. The findings indicate that soil incorporation of biochar produced from agricultural crop residues can enhance food security and mitigate the contribution of the agricultural sector to climate change impacts.

Funder

Chulalongkorn University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3