NewApproach to Predict the Motion Characteristics of Single Bubbles in Still Water

Author:

Deng BinORCID,Chin Ren JieORCID,Tang Yao,Jiang Changbo,Lai Sai Hin

Abstract

Under the action of gravity, buoyancy, and surface tension, bubbles generated by wave breaking will rupture and polymerize, causing the occurrence of high-speed jets and strong turbulence in nearby water bodies, which in turn affects sea–air exchange, sediment transport, and pollutant movement. These interactions are closely related to the shape and velocity changes in single bubbles. Therefore, understanding the motion characteristics of single bubbles is essential. In this research, a large number of experiments were carried out to serve this purpose. The experimental data were used to develop three machine learning models for the bubble final velocity, bubble drag coefficient, and bubble shape, respectively. The performance of the feed forward back propagation neural network (FBNN) models for the final velocity and drag coefficient were evaluated. The coefficient of determination (R2) and root mean squared error (RMSE) value of final velocity prediction model was recorded at 0.83 and 0.0518, respectively. Meanwhile, for the drag coefficient prediction model, the values are 0.92 for R2 and 0.1534 for RMSE. The models can provide a more accurate output if compared to that from the empirical formulas. K-nearest neighbours (KNN), logistic regression, and random forest were applied as the algorithm while developing the bubble shape classification model. The best performance is achieved by the logistic regression.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference39 articles.

1. Shapes and velocities of single drops and bubbles moving freely through immiscible liquids;Grace;Chem. Eng. Res. Des.,1976

2. Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean

3. VIII. On the pressure developed in a liquid during the collapse of a spherical cavity

4. The prediction of bubble terminal velocities from wave theory

5. Particles, Bubbles and Drops: Their Motion, Heat and Mass Transfer;Michaelides,2006

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3