Optimal Agents for Visualizing Collagen Tissue Microarchitecture Using Contrast-Enhanced MicroCT

Author:

Glancy Spencer B.1,Morris Herman Douglas2ORCID,Ho Vincent B.23,Klarmann George J.34

Affiliation:

1. San Antonio Uniformed Services Health Education Consortium, San Antonio, TX 78234, USA

2. School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA

3. 4D Bio3 Center for Biotechnology, Uniformed Services University, Bethesda, MD 20814, USA

4. The Geneva Foundation, Tacoma, WA 98402, USA

Abstract

Micro-computed tomography (microCT) is a common tool for the visualization of the internal composition of organic tissues. Collagen comprises approximately 25–35% of the whole-body protein content in mammals, and the structure and arrangement of collagen fibers contribute significantly to the integrity of tissues. Collagen type I is also frequently used as a key structural component in tissue-engineered and bioprinted tissues. However, the imaging of collagenous tissues is limited by their inherently low X-ray attenuation, which makes them indistinguishable from most other soft tissues. An imaging contrast agent that selectively alters X-ray attenuation is thus essential to properly visualize collagenous tissue using a standard X-ray tube microCT scanner. This review compares various contrast-enhanced techniques reported in the literature for MicroCT visualization of collagen-based tissues. An ideal microCT contrast agent would meet the following criteria: (1) it diffuses through the tissue quickly; (2) it does not deform or impair the object being imaged; and (3) it provides sufficient image contrast for reliable visualization of the orientation of individual fibers within the collagen network. The relative benefits and disadvantages of each method are discussed. Lugol’s solution (I3K), phosphotungstic acid (H3PW12O40), mercury(II) chloride (HgCl2), and Wells–Dawson polyoxometalates came closest to fitting the criteria. While none of the contrast agents discussed in the literature met all criteria, each one has advantages to consider in the context of specific lab capabilities and imaging priorities.

Funder

Uniformed Services University of the Health Sciences

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3