Detecting Shoot Beetle Damage on Yunnan Pine Using Landsat Time-Series Data

Author:

Yu Linfeng,Huang Jixia,Zong Shixiang,Huang HuaguoORCID,Luo Youqing

Abstract

Tomicus yunnanensis and Tomicus minor have caused serious shoot damage in Yunnan pine forests in the Yunnan Province of China. However, very few remote sensing studies have estimated the shoot damage ratio (SDR). Thus, we used multi-date Landsat satellite imagery to quantify SDRs and assess the possibility of using spectral indices to determine the beetle outbreak time and spread direction. A new threshold-based classification method was proposed to identify damage levels (i.e., healthy, slightly to moderately infested, and severely infested forests) using time series of moisture stress index (MSI). Permanent plots and temporal field inspection data were both used as references for training and evaluation. Results show that a single threshold value can produce a total classification accuracy of 86.38% (Kappa = 0.80). Furthermore, time series maps detailing damage level were reconstructed from 2004 to 2016. The shoot beetle outbreak year was estimated to be 2013. Another interesting finding is the movement path of the geometric center of severe damage, which is highly consistent with the wind direction. We conclude that the time series of shoot damage level maps can be produced by using continuous MSI images. This method is very useful to foresters for determining the outbreak time and spread direction.

Funder

Special Project for Scientific Research of Forestry Commonweal Industry of National Forestry Bureau

Publisher

MDPI AG

Subject

Forestry

Reference61 articles.

1. Pinus Yunnanensis;Jin,2004

2. Studies on the geographical provenance of Pinus yunnanensis I. Seeding test;Luo;Acta Bot. Yunnanica,1987

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3