A Hybrid Network for Large-Scale Action Recognition from RGB and Depth Modalities

Author:

Wang HuogenORCID,Song Zhanjie,Li Wanqing,Wang Pichao

Abstract

The paper presents a novel hybrid network for large-scale action recognition from multiple modalities. The network is built upon the proposed weighted dynamic images. It effectively leverages the strengths of the emerging Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) based approaches to specifically address the challenges that occur in large-scale action recognition and are not fully dealt with by the state-of-the-art methods. Specifically, the proposed hybrid network consists of a CNN based component and an RNN based component. Features extracted by the two components are fused through canonical correlation analysis and then fed to a linear Support Vector Machine (SVM) for classification. The proposed network achieved state-of-the-art results on the ChaLearn LAP IsoGD, NTU RGB+D and Multi-modal & Multi-view & Interactive ( M 2 I ) datasets and outperformed existing methods by a large margin (over 10 percentage points in some cases).

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multimodal vision-based human action recognition using deep learning: a review;Artificial Intelligence Review;2024-06-19

2. Comparison Analysis of Multimodal Fusion for Dangerous Action Recognition in Railway Construction Sites;Electronics;2024-06-12

3. Domain-Adaptive and Context-Aware Fall Detection Based on Coarse-Fine Network Learning;International Journal of Innovative Science and Research Technology (IJISRT);2024-05-23

4. SynthAct: Towards Generalizable Human Action Recognition based on Synthetic Data;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

5. Multimodal action recognition: a comprehensive survey on temporal modeling;Multimedia Tools and Applications;2023-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3