Effect of Cyclic Loading on Mode I Fracture Toughness of Granite under Real-Time High-Temperature Conditions

Author:

Lv Fei1,Zhang Fan1,Zhang Subiao1,Li Kangwen1,Ma Shuangze1

Affiliation:

1. School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China

Abstract

Under hot dry rock development, rock formations undergo the combined challenges of cyclic loading and high temperatures, stemming from various sources such as cyclic hydraulic fracturing and mechanical excavation. Therefore, a fundamental understanding of how rocks fracture under these demanding conditions is fundamental for cyclic hydraulic fracturing technology. To this end, a series of three-point bending tests were conducted on granite samples. These tests entailed exposing the samples to cyclic loading under varying real-time high-temperature environments, ranging from 25 °C to 400 °C. Furthermore, different upper load limits (75%, 80%, 85%, and 90% of the peak load) obtained in monotonic three-point bending tests were used to explore the behavior of granite under these conditions. The analysis encompassed the study of load–displacement curves, elastic stiffness, and mode I fracture toughness under cyclic loading conditions. In addition, the microscopic features of the fracture surface were examined using a scanning electron microscope (SEM). The findings revealed notable patterns in the behavior of granite. Cumulative vertical displacement in granite increased with the growing number of cycles, especially at 25 °C, 200 °C, and 300 °C. This displacement exhibited a unique trend, initially decreasing before subsequently rising as the cycle count increased. Additionally, the critical damage threshold of granite exhibited a gradual decline as the temperature rose. As the temperature ascended from 25 °C to 200 °C, the damage threshold typically ranged between 80% and 85% of the peak load. At 300 °C, this threshold declined to approximately 75–80% of the peak load, and at 400 °C, it fell below 75% of the peak load. Within the temperature ranging from 25 °C to 300 °C, we noted a significant increase in the incidence of cracks, crystal microfracture zones, and the dislodging of mineral particles within the granite as the number of cycles increased.

Funder

National Natural Science Foundation of China

Shandong Lunan Geological Engineering Exploration Institute Open Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3