Effects of Photobiomodulation Using Near-Infrared Light on the Dentin and Periodontal Ligament in a Beagle Model

Author:

Kim Hong Bae12ORCID,Baik Ku Youn3,Kang Moon Ho4ORCID,Chung Jong Hoon1ORCID

Affiliation:

1. Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea

2. Medical Engineering Research Center, The Standard Co., Ltd., Gunpo 15880, Republic of Korea

3. Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea

4. Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea

Abstract

In this study, we investigated the effect of photobiomodulation (PBM) using near-infrared light on the dentin and periodontal ligament in a beagle model. We utilized a specific PBM device to irradiate NIR light with a wavelength of 810 nm and an energy density of 80.22 mJ/cm2. The device’s settings were optimized for a frequency of 300 Hz and a 30% duty cycle, allowing precise and controlled light exposure. Through a comprehensive analysis involving micro-computed tomography, scanning electron microscopy, and hematoxylin and eosin staining, we demonstrated increased odontoblast activity at the pulp–dentin interface in PBM-treated samples. This increased activity may be postulated to potentially contribute to alleviating dental hypersensitivity through the differentiation of dental pulp stem cells and the promotion of vascular development within the odontoblast layer. Moreover, our observations also indicated an improvement in the strength and integrity of fibrous connective tissue within the periodontal ligament. These findings highlight the potential of PBM with specific parameters applied using NIR as a valuable treatment method for tooth tissue regeneration. It shows particular promise in the treatment of dental diseases associated with dentin and periodontal ligament damage and offers a new perspective in the management of tooth hypersensitivity and other related dental diseases.

Funder

National Research Foundation of Korea

Kwangwoon University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3