Conversion of a Small-Size Passenger Car to Hydrogen Fueling: 0D/1D Simulation of EGR and Related Flow Limitations

Author:

Irimescu Adrian1,Vaglieco Bianca Maria1ORCID,Merola Simona Silvia1ORCID,Zollo Vasco2,De Marinis Raffaele2

Affiliation:

1. Institute of Science and Technology for Sustainable Energy and Mobility STEMS-CNR, Via G. Marconi 4, 80125 Naples, Italy

2. Demax SRL, Strada Statale 7 Appia km 251, 82014 Ceppaloni, Italy

Abstract

Hydrogen is seen as a prime choice for complete replacement of gasoline so as to achieve zero-emissions energy and mobility. Combining the use of this alternative fuel with a circular economy approach for giving new life to the existing fleet of passenger cars ensures further benefits in terms of cost competitiveness. Transforming spark ignition (SI) engines to H2 power requires relatively minor changes and limited added components. Within this framework, the conversion of a small-size passenger car to hydrogen fueling was evaluated based on 0D/1D simulation. One of the methods to improve efficiency is to apply exhaust gas recirculation (EGR), which also lowers NOx emissions. Therefore, the previous version of the quasi-dimensional model was modified to include EGR and its effects on combustion. A dedicated laminar flame speed model was implemented for the specific properties of hydrogen, and a purpose-built sub-routine was implemented to correctly model the effects of residual gas at the start of combustion. Simulations were performed in several operating points representative of urban and highway driving. One of the main conclusions was that high-pressure recirculation was severely limited by the minimum flow requirements of the compressor. Low-pressure EGR ensured wider applicability and significant improvement of efficiency, especially during partial-load operation specific to urban use. Another benefit of recirculation was that pressure rise rates were predicted to be more contained and closer to the values expected for gasoline fueling. This was possible due to the high tolerance of H2 to the presence of residual gas.

Funder

National Sustainable Mobility Center

Italian Ministry of University and Research Decree

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3