Analyzing the Influence of Diverse Background Noises on Voice Transmission: A Deep Learning Approach to Noise Suppression

Author:

Nogales Alberto1ORCID,Caracuel-Cayuela Javier1,García-Tejedor Álvaro J.1ORCID

Affiliation:

1. CEIEC, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda km. 1800, 28223 Madrid, Spain

Abstract

This paper presents an approach to enhancing the clarity and intelligibility of speech in digital communications compromised by various background noises. Utilizing deep learning techniques, specifically a Variational Autoencoder (VAE) with 2D convolutional filters, we aim to suppress background noise in audio signals. Our method focuses on four simulated environmental noise scenarios: storms, wind, traffic, and aircraft. The training dataset has been obtained from public sources (TED-LIUM 3 dataset, which includes audio recordings from the popular TED-TALK series) combined with these background noises. The audio signals were transformed into 2D power spectrograms, upon which our VAE model was trained to filter out the noise and reconstruct clean audio. Our results demonstrate that the model outperforms existing state-of-the-art solutions in noise suppression. Although differences in noise types were observed, it was challenging to definitively conclude which background noise most adversely affects speech quality. The results have been assessed with objective (mathematical metrics) and subjective (listening to a set of audios by humans) methods. Notably, wind noise showed the smallest deviation between the noisy and cleaned audio, perceived subjectively as the most improved scenario. Future work should involve refining the phase calculation of the cleaned audio and creating a more balanced dataset to minimize differences in audio quality across scenarios. Additionally, practical applications of the model in real-time streaming audio are envisaged. This research contributes significantly to the field of audio signal processing by offering a deep learning solution tailored to various noise conditions, enhancing digital communication quality.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning Approaches for Enhanced Audio Quality Through Noise Reduction;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3