CA-BSN: Mural Image Denoising Based on Cross–Attention Blind Spot Network

Author:

Cai Xingquan1ORCID,Liu Yao1ORCID,Liu Shike1ORCID,Zhang Haoyu1ORCID,Sun Haiyan1ORCID

Affiliation:

1. School of Information Science and Technology, North China University of Technology, Beijing 100144, China

Abstract

Recently, Asymmetric pixel–shuffle downsampling and Blind–Spot Network (AP-BSN) has made some progress in unsupervised image denoising. However, the method tends to damage the texture and edge information of the image when using pixel-shuffle downsampling (PD) to destroy pixel-related large-scale noise. To tackle this issue, we suggest a denoising method for mural images based on Cross Attention and Blind–Spot Network (CA-BSN). First, the input image is downsampled using PD, and after passing through a masked convolution module (MCM), the features are extracted respectively; then, a cross attention network (CAN) is constructed to fuse the extracted feature; finally, a feed-forward network (FFN) is introduced to strengthen the correlation between the feature, and the denoised processed image is output. The experimental results indicate that our proposed CA-BSN algorithm achieves a PSNR growth of 0.95 dB and 0.15 dB on the SIDD and DND datasets, respectively, compared to the AP-BSN algorithm. Furthermore, our method demonstrates a SSIM growth of 0.7% and 0.2% on the SIDD and DND datasets, respectively. The experiments show that our algorithm preserves the texture and edge details of the mural images better than AP-BSN, while also ensuring the denoising effect.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

1. Changes and development of ancient Chinese murals from the use of materials and production process;Hou;Relics Museolgy,2011

2. Research on protection technology of cultural relics in mural painting category;Hu;Orient. Collect.,2022

3. Ancient mural digital restoration method;Wang;Orient. Collect.,2021

4. Research on intelligent digital restoration of mural images;Liang;Identif. Apprec. Cult. Relics,2022

5. Research on digital protection and scientific and technological innovation of Ming and Qing murals in Weixian County, Hebei Province;Du;Pop. Lit. Art,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3