Enhanced Intrusion Detection with LSTM-Based Model, Feature Selection, and SMOTE for Imbalanced Data

Author:

Sayegh Hussein Ridha1,Dong Wang1,Al-madani Ali Mansour1

Affiliation:

1. College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China

Abstract

This study introduces a sophisticated intrusion detection system (IDS) that has been specifically developed for internet of things (IoT) networks. By utilizing the capabilities of long short-term memory (LSTM), a deep learning model renowned for its proficiency in modeling sequential data, our intrusion detection system (IDS) effectively discerns between regular network traffic and potential malicious attacks. In order to tackle the issue of imbalanced data, which is a prevalent concern in the development of intrusion detection systems (IDSs), we have integrated the synthetic minority over-sampling technique (SMOTE) into our approach. This incorporation allows our model to accurately identify infrequent incursion patterns. The rebalancing of the dataset is accomplished by SMOTE through the generation of synthetic samples belonging to the minority class. Various strategies, such as the utilization of generative adversarial networks (GANs), have been put forth in order to tackle the issue of data imbalance. However, SMOTE (synthetic minority over-sampling technique) presents some distinct advantages when applied to intrusion detection. The SMOTE is characterized by its simplicity and proven efficacy across diverse areas, including in intrusion detection. The implementation of this approach is straightforward and does not necessitate intricate adversarial training techniques such as generative adversarial networks (GANs). The interpretability of SMOTE lies in its ability to generate synthetic samples that are aligned with the properties of the original data, rendering it well suited for security applications that prioritize transparency. The utilization of SMOTE has been widely embraced in the field of intrusion detection research, demonstrating its effectiveness in augmenting the detection capacities of intrusion detection systems (IDSs) in internet of things (IoT) networks and reducing the consequences of class imbalance. This study conducted a thorough assessment of three commonly utilized public datasets, namely, CICIDS2017, NSL-KDD, and UNSW-NB15. The findings indicate that our LSTM-based intrusion detection system (IDS), in conjunction with the implementation of SMOTE to address data imbalance, outperforms existing methodologies in accurately detecting network intrusions. The findings of this study provide significant contributions to the domain of internet of things (IoT) security, presenting a proactive and adaptable approach to safeguarding against advanced cyberattacks. Through the utilization of LSTM-based deep learning techniques and the mitigation of data imbalance using SMOTE, our AI-driven intrusion detection system (IDS) enhances the security of internet of things (IoT) networks, hence facilitating the wider implementation of IoT technologies across many industries.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. Malik, N., Sardaraz, M., Tahir, M., Shah, B., Ali, G., and Moreira, F. (2021). Energy-efficient load balancing algorithm for workflow scheduling in cloud data centers using queuing and thresholds. Appl. Sci., 11.

2. Baiyere, A., Topi, H., Venkatesh, V., Wyatt, J., Design, R., and Donnellan, B. (2022, May 24). Communications of the Association for Information Systems Internet of Things (IoT)—A Research Agenda for Information Systems. Available online: https://ssrn.com/abstract=3844214.

3. A comprehensive study on cybersecurity challenges and opportunities in the IoT world;Lone;Secur. Priv.,2023

4. Intrusion Detection System for IoT Based on Deep Learning and Modified Reptile Search Algorithm;Dahou;Comput. Intell. Neurosci.,2022

5. Long Short-Term Memory;Hochreiter;Neural Comput.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3