Effects of La-Co Co-Substitution on the Structural and Magnetic Properties of SrM Hexaferrites Prepared by Solid-State Reaction

Author:

Lee Kanghyuk1,Kang Young-Min2ORCID,Yoo Sang-Im1

Affiliation:

1. Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea

2. Department of Materials Science & Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea

Abstract

The effects of La-Co co-substitution on the structural and magnetic properties of strontium M-type hexaferrites (SrM) were carefully investigated for the Sr1−xLaxFe12−xCoxO19 (0.0 ≤ x ≤ 0.3) polycrystalline samples prepared by solid-state reaction in air. Without the use of sintering additives, La-Co co-substituted SrM single phases could be obtained from polycrystalline bulk samples by employing proper processing conditions. The lattice parameter a initially increases with increasing x from 0.0 to 0.1 but gradually decreases with increasing x to 0.20, and then remains almost unaltered up to x = 0.3; the lattice parameter c monotonously decreases with increasing x from 0.0 to 0.25, but it turns to an increase when x = 0.3. The reduction in c/a ratios and Vcell values with increasing x up to x = 0.25 are obviously attributable to the decreasing size effect resulting from La3+ substitution at the Sr2+ site, which surpasses the increasing size effect due to Co2+ and Fe2+ occupancy at the Fe3+ site. Meanwhile, with increasing x from 0.0 to 0.3, while the saturation magnetization (MS) continuously decreases from 75.90 to 72.07 emu/g, the magnetic anisotropy field (Ha) increases from 20.1 to 24.7 kOe, leading to an increase in the intrinsic coercivity (Hci) from 2.68 to 3.99 kOe. The gradual increase in Ha with x, probably caused by a gradual decrease in the crystallographic symmetry, is inversely proportional to the variation in the c/a ratios up to x = 0.25 as usual except when x = 0.3, of which deviation needs further study.

Funder

National Research Foundation of Korea

Ministry of Science and ICT

Publisher

MDPI AG

Reference39 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3