MTUW-GAN: A Multi-Teacher Knowledge Distillation Generative Adversarial Network for Underwater Image Enhancement

Author:

Zhang Tianchi1,Liu Yuxuan1

Affiliation:

1. School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China

Abstract

Underwater imagery is plagued by issues such as image blurring and color distortion, which significantly impede the detection and operational capabilities of underwater robots, specifically Autonomous Underwater Vehicles (AUVs). Previous approaches to image fusion or multi-scale feature fusion based on deep learning necessitated multi-branch image preprocessing prior to merging through fusion modules. However, these methods have intricate network structures and a high demand for computational resources, rendering them unsuitable for deployment on AUVs, which have limited resources at their disposal. To tackle these challenges, we propose a multi-teacher knowledge distillation GAN for underwater image enhancement (MTUW-GAN). Our approach entails multiple teacher networks instructing student networks simultaneously, enabling them to enhance color and detail in degraded images from various perspectives, thus achieving an image-fusion-level performance. Additionally, we employ middle layer channel distillation in conjunction with the attention mechanism to extract and transfer rich middle layer feature information from the teacher model to the student model. By eliminating multiplexed branching and fusion modules, our lightweight student model can directly generate enhanced underwater images through model compression. Furthermore, we introduce a multimodal objective enhancement function to refine the overall framework training, striking a balance between a low computational effort and high-quality image enhancement. Experimental results, obtained by comparing our method with existing approaches, demonstrate the clear advantages of our proposed method in terms of visual quality, model parameters, and real-time performance. Consequently, our method serves as an effective solution for real-time underwater image enhancement, specifically tailored for deployment on AUVs.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3