Real-Time Protozoa Detection from Microscopic Imaging Using YOLOv4 Algorithm

Author:

Kahraman İdris1ORCID,Karaş İsmail Rakıp1,Turan Muhammed Kamil2

Affiliation:

1. Computer Engineering Department, Engineering Faculty, Karabuk University, 78010 Karabuk, Turkey

2. Department of Medicine, Karabuk University, 78010 Karabuk, Turkey

Abstract

Protozoa detection and classification from freshwaters and microscopic imaging are critical components in environmental monitoring, parasitology, science, biological processes, and scientific research. Bacterial and parasitic contamination of water plays an important role in society health. Conventional methods often rely on manual identification, resulting in time-consuming analyses and limited scalability. In this study, we propose a real-time protozoa detection framework using the YOLOv4 algorithm, a state-of-the-art deep learning model known for its exceptional speed and accuracy. Our dataset consists of objects of the protozoa species, such as Bdelloid Rotifera, Stylonychia Pustulata, Paramecium, Hypotrich Ciliate, Colpoda, Lepocinclis Acus, and Clathrulina Elegans, which are in freshwaters and have different shapes, sizes, and movements. One of the major properties of our work is to create a dataset by forming different cultures from various water sources like rainwater and puddles. Our network architecture is carefully tailored to optimize the detection of protozoa, ensuring precise localization and classification of individual organisms. To validate our approach, extensive experiments are conducted using real-world microscopic image datasets. The results demonstrate that the YOLOv4-based model achieves outstanding detection accuracy and significantly outperforms traditional methods in terms of speed and precision. The real-time capabilities of our framework enable rapid analysis of large-scale datasets, making it highly suitable for dynamic environments and time-sensitive applications. Furthermore, we introduce a user-friendly interface that allows researchers and environmental professionals to effortlessly deploy our YOLOv4-based protozoa detection tool. We conducted f1-score 0.95, precision 0.92, sensitivity 0.98, and mAP 0.9752 as evaluating metrics. The proposed model achieved 97% accuracy. After reaching high efficiency, a desktop application was developed to provide testing of the model. The proposed framework’s speed and accuracy have significant implications for various fields, ranging from a support tool for paramesiology/parasitology studies to water quality assessments, offering a powerful tool to enhance our understanding and preservation of ecosystems.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3