Design and Control Simulation Analysis of Tender Tea Bud Picking Manipulator

Author:

Xue Peng123,Li Qing123ORCID,Fu Guodong123

Affiliation:

1. School of Automation, Beijing Information Science & Technology University, Beijing 100192, China

2. Ministry of Education Key Laboratory of Modern Measurement & Control Technology, Beijing 100192, China

3. Beijing Key Laboratory of High Dynamic Navigation Technology, Beijing 100192, China

Abstract

Aiming at the current complex problem of the mechanized high-quality picking of tender tea buds, this paper designs a tender tea bud-picking manipulator. In the picking process, the quality of the petiole and leaf blade of the tender tea bud is crucial, as the traditional cutting picking method destroys the cell structure of the tender tea buds, resulting in rapid oxidation of the cuts, thus losing the bright green appearance and pure taste. For this reason, this paper draws on the quality requirements of tender tea buds and traditional manual picking technology, simulating the process of the manual picking action, putting forward a ‘rotary pull-up’ clamping and ripping picking method, and designing the corresponding actuating structure. Using PVDF material piezoelectric thin-film sensors to detect the clamping force of the tender tea bud picking, the corresponding sensor hardware circuit is designed. In addition, the finite element analysis method is also used to carry out stress analysis on the mechanical fingers to verify the rationality of the automatic mechanism to ensure the high-quality picking of tender tea buds. In terms of the control of the manipulator, an SMC-PID control method is designed by using MATLAB/Simulink 2021 and Adam 2020 software for joint simulation. The way to control the closed-loop system angle and angular velocity error feedback is by adjusting the PID parameters, which quickly converts the sliding mode control to the sliding mode surface. The simulation results show that the SMC-PID control method proposed in this paper can meet the demand in tender tea bud picking and simultaneously has high control accuracy, response speed, and stability.

Funder

The National Key Research and Development Program of China

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3