Underwater Vehicle Path Planning Based on Bidirectional Path and Cached Random Tree Star Algorithm

Author:

Gao Jinxiong1,Geng Xu1,Zhang Yonghui1,Wang Jingbo1

Affiliation:

1. School of Information and Communication Engineering, Hainan University, Haikou 570100, China

Abstract

Underwater autonomous path planning is a critical component of intelligent underwater vehicle system design, especially for maritime conservation and monitoring missions. Effective path planning for these robots necessitates considering various constraints related to robot kinematics, optimization objectives, and other pertinent factors. Sample-based strategies have successfully tackled this problem, particularly the rapidly exploring random tree star (RRT*) algorithm. However, conventional path-searching algorithms may face challenges in the marine environment due to unique terrain undulations, sparse and unpredictable obstacles, and inconsistent results across multiple planning iterations. To address these issues, we propose a new approach specifically tailored to the distinct features of the marine environment for navigation path planning of underwater vehicles, named bidirectional cached rapidly exploring random tree star (BCRRT*). By incorporating bidirectional path planning and caching algorithms on top of the RRT*, the search process can be expedited, and an efficient path connection can be achieved. When encountering new obstacles, ineffective portions of the cached path can be efficiently modified and severed, thus minimizing the computational workload while enhancing the algorithm’s adaptability. A certain number of simulation experiments were conducted, demonstrating that our proposed method outperformed cutting-edge techniques like the RRT* in several critical metrics such as the density of path nodes, planning time, and dynamic adaptability.

Funder

Innovation project of Hainan Province of China

Key research and development planned project of China

Key Development Project of Hainan Province of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3