Sports Video Classification Method Based on Improved Deep Learning

Author:

Gao Tianhao1,Zhang Meng1,Zhu Yifan2,Zhang Youjian1,Pang Xiangsheng1ORCID,Ying Jing2,Liu Wenming1

Affiliation:

1. Department of Sport Science, College of Education, Zhejiang University, Hangzhou 310027, China

2. College of Computer Science, Zhejiang University, Hangzhou 310027, China

Abstract

Classifying sports videos is complex due to their dynamic nature. Traditional methods, like optical flow and the Histogram of Oriented Gradient (HOG), are limited by their need for expertise and lack of universality. Deep learning, particularly Convolutional Neural Networks (CNNs), offers more effective feature recognition in sports videos, but standard CNNs struggle with fast-paced or low-resolution sports videos. Our novel neural network model addresses these challenges. It begins by selecting important frames from sports footage and applying a fuzzy noise reduction algorithm to enhance video quality. The model then uses a bifurcated neural network to extract detailed features, leading to a densely connected neural network with a specific activation function for categorizing videos. We tested our model on a High-Definition Sports Video Dataset covering over 20 sports and a low-resolution dataset. Our model outperformed established classifiers like DenseNet, VggNet, Inception v3, and ResNet-50. It achieved high precision (0.9718), accuracy (0.9804), F-score (0.9761), and recall (0.9723) on the high-resolution dataset, and significantly better precision (0.8725) on the low-resolution dataset. Correspondingly, the highest values on the matrix of four traditional models are: precision (0.9690), accuracy (0.9781), F-score (0.9670), recall (0.9681) on the high-resolution dataset, and precision (0.8627) on the low-resolution dataset. This demonstrates our model’s superior performance in sports video classification under various conditions, including rapid motion and low resolution. It marks a significant step forward in sports data analytics and content categorization.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3