Assessing the Impact of Sensor Orientation on Accelerometer-Derived Angles: A Systematic Analysis and Proposed Error Reduction

Author:

McClintock Frederick A.1,Callaway Andrew J.1ORCID,Clark Carol J.1,Williams Jonathan M.1ORCID

Affiliation:

1. Faculty of Health and Social Sciences, Bournemouth University, Fern Barrow, Poole BH12 5BB, UK

Abstract

Accelerometers have been widely used for motion analysis. The effect of initial sensor orientation (ISO) on the derived range of motion (ROM) is currently unexplored, limiting clarity in understanding error. This two-step study systematically explored the effect of ISO on the error of accelerometer-derived range of motion (ROM) and the effect of a proposed correction algorithm. Accelerometer data were used to compute peak and through-range ROM across a range of ISO and movement angular velocities up to 148° s−1 compared to an optoelectronic gold-standard. Step 1 demonstrated that error increased linearly with increasing ISO offsets and angular velocity. Average peak ROM RMSE at an ISO of 20° tilt and twist was 5.9° for sagittal motion, and for an ISO of 50° pitch and 20° twist, it was 7.5° for frontal plane ROM. Through-range RMSE demonstrated errors of 7–8° for similar ISOs. Predictive modeling estimated a 3.2° and 3.7° increase in peak and through-range sagittal plane error for every 10° increase in tilt and twist ISO. Step 2 demonstrated error reduction utilizing mathematical correction for ISO, resulting in <1° mean peak error and <1.2° mean through-range ROM error regardless of ISO. Accelerometers can be used to measure cardinal plane joint angles, but initial orientation is a source of error unless corrected.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3