Depth Image Completion through Iterative Low-Pass Filtering

Author:

Wang Tzu-Kai1,Yu Yeh-Wei1,Yang Tsung-Hsun1ORCID,Huang Pin-Duan1,Zhu Guan-Yu1,Lau Chi-Chung2,Sun Ching-Cherng1

Affiliation:

1. Department of Optical and Photonics, National Central University, Chung-Li, Taoyuan City 320317, Taiwan

2. Energy and Resource Laboratories, Industrial Technology Research Institute, Hsinchu 31041, Taiwan

Abstract

This study introduces a spatial-modulated approach designed to recover missing data in in-depth images. Typically, commercial-grade RGB-D cameras utilize structured light or time-of-flight techniques for capturing scene depth. However, these conventional methods encounter difficulties in acquiring depth data from glossy, transparent, or low-reflective surfaces. Additionally, they are prone to interference from broad-spectrum light sources, resulting in defective areas in the captured data. The generation of dense data is further compromised by the influence of noise. In response to these challenges, we implemented an iterative low-pass filter in the frequency domain, effectively mitigating noise and restoring high-quality depth data across all surfaces. To assess the efficacy of our method, deliberate introduction of significant noise and induced defects in the generated depth images was performed. The experimental results unequivocally demonstrate the promising accuracy, precision, and noise-resilient capabilities of our approach. Our implementation is publicly available on the project’s webpage.

Funder

National Science and Technology Council of Taiwan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3