Gasification Performance of Barley Straw Waste Blended with Lignite for Syngas Production under Steam or Carbon Dioxide Atmosphere

Author:

Vamvuka Despina1,Zacheila Konstantina1

Affiliation:

1. School of Mineral Resources Engineering, University Campus Chania, Technical University of Crete, 73100 Hania, Crete, Greece

Abstract

The gasification performance of lignite/barley straw mixtures for syngas production was investigated. The experiments were carried out under a steam or carbon dioxide atmosphere, in fixed-bed and thermogravimetric–mass spectrometry systems. The thermal behavior, reactivity, conversion, product gas composition, liquid and gaseous by-products and interactions between fuels were determined and correlated with the structural characteristics and inherent minerals in ashes, which were analyzed via mineralogical, chemical and fusibility tests. Devolatilization of the materials up to 600 °C resulted in the carbon enrichment of chars and a 30–90-fold increase in the specific surface area. Gaseous and liquid by-products with higher heating values of 5–7 MJ/m3 and 20–28 MJ/kg could offer valuable energy. Upon steam gasification up to 1000 °C, product gas was enriched in hydrogen and carbon monoxide. The syngas yield and heating value of the gas mixture were higher for barley straw fuel (0.77 m3/kg, 11.4 MJ/m3), which, when blended with the lignite, produced upgraded products. Upon carbon dioxide gasification up to 1000 °C, barley straw char exhibited a 3-times higher rate than the lignite, as well as higher conversion (94.5% vs. 62.9%) and a higher syngas yield (0.84 m3/kg vs. 0.55 m3/kg). Lignite/barley straw blends showed synergistic effects and presented higher gasification reactivity and conversion in comparison to lignite. The overall performance of lignite was improved with the steam reagent, while that of barley straw was improved with the carbon dioxide reagent.

Publisher

MDPI AG

Reference32 articles.

1. World Energy Council (2018, September 10). World Energy Resources. Available online: http://www.worldenergy.org/Full-report2016.10.03pdf.

2. (2017, April 10). World Energy Outlook. Available online: http://www.iea.org/media/publications/weo/WEO2016.Chapter1.pdf.

3. Increasing the reactivity of waste biochars during their co-gasification with carbon dioxide using catalysts and bio-oils;Vamvuka;Thermoch. Acta,2021

4. Characteristics of rice husk char gasification with steam;Zhai;Fuel,2015

5. Gasification characteristics of biomass at a high-temperature steam atmosphere;Li;Fuel Process. Technol.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3