Affiliation:
1. School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130012, China
Abstract
Within the framework of isotropic materials, this paper introduces an efficient topology optimization method that incorporates fail-safe design considerations using a penalty function approach. Existing methods are either computationally expensive or overlook fail-safe requirements during optimization. This approach not only achieves optimized structures with fail-safe characteristics, but also significantly enhances the computational efficiency of fail-safe topology optimization. In this method, the minimization of worst-case compliance serves as the optimization objective, employing the Kreisselmeier–stein Hauser function to approximate the non-differentiable maximum operator. A sensitivity analysis, derived through the adjoint method, is utilized, and a universal fail-safe optimization criterion is developed to update the design variables. During the optimization process for fail-safe strategies, a density-based filtering method is applied, effectively reducing damage scenarios. Finally, the effectiveness and computational efficiency of this method are validated through several numerical examples.
Funder
Outstanding Young Researcher Fund
National Natural Science Foundation of China
the National Key Research and Development Program of China