A Surface of Section for Hydrogen in Crossed Electric and Magnetic Fields

Author:

Burke Korana,Mitchell Kevin

Abstract

A well defined global surface of section (SOS) is a necessary first step in many studies of various dynamical systems. Starting with a surface of section, one is able to more easily find periodic orbits as well as other geometric structures that govern the nonlinear dynamics of the system in question. In some cases, a global surface of section is relatively easily defined, but in other cases the definition is not trivial, and may not even exist. This is the case for the electron dynamics of a hydrogen atom in crossed electric and magnetic fields. In this paper, we demonstrate how one can define a surface of section and associated return map that may fail to be globally well defined, but for which the dynamics is well defined and continuous over a region that is sufficiently large to include the heteroclinic tangle and thus offers a sound geometric approach to studying the nonlinear dynamics.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference25 articles.

1. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering;Strogatz,2018

2. Differential Dynamical Systems, Revised Edition;Meiss,2017

3. Chaos: Classical and Quantum;Cvitanović,2016

4. Chaotic Transport in Dynamical Systems;Wiggins,1992

5. Transport rates of a class of two-dimensional maps and flows

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3