Effect of Chloride Ions on the Point-of-Use Drinking Water Disinfection Performance of Porous Ceramic Media Embedded with Metallic Silver and Copper

Author:

Singh RekhaORCID,Kim WoohangORCID,Smith James A.ORCID

Abstract

This study quantifies the effects of chloride ions on silver and copper release from porous ceramic cubes embedded with silver and copper and its effect on E. coli disinfection in drinking water. Log-reduction of E. coli by silver ions decreased after 4 h of contact time as the chloride ion concentration increased from 0 to 250 mg/L but, it was not changed by copper ions under the same conditions. For silver addition by silver-ceramic cubes, log reductions of E. coli decreased sharply from 7.2 to 1.6 after 12 h as the chloride concentration increased from 0 to 250 mg/L. For the silver-ceramic cube experiments, chloride ion also reduced the total silver concentration in solution. After 24 h, total silver concentrations in solution decreased from 61 µg/L to 20 µg/L for corresponding chloride ion concentrations. According to the MINTEQ equilibrium model analysis, the decrease in disinfection ability with silver embedded ceramic cubes could be the result of precipitation of silver ions as silver chloride. This suggests that AgCl was precipitating within the pore space of the ceramic. These results indicate that, although ionic silver is a highly effective disinfectant for E. coli, the presence of chloride ions can significantly reduce disinfection efficacy. For copper-ceramic cubes, log reductions of E. coli by copper embedded cubes increased from 1.2 to 1.5 when chloride ion concentration increased from 0 to 250 mg/L. Total copper concentrations in solution increased from 4 µg/L to 14 µg/L for corresponding chloride ion concentrations. These results point towards the synergistic effect of chloride ions on copper oxidation as an increased concentration of chloride enhances copper release.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3