Abstract
Single-cell capture plays an important role in single-cell manipulation and analysis. This paper presents a microfluidic device for deterministic single-cell trapping based on the hydrodynamic trapping mechanism. The device is composed of an S-shaped loop channel and thousands of aligned trap units. This arrayed structure enables each row of the device to be treated equally and independently, as it has row periodicity. A theoretical model was established and a simulation was conducted to optimize the key geometric parameters, and the performance was evaluated by conducting experiments on MCF-7 and Jurkat cells. The results showed improvements in single-cell trapping ability, including loading efficiency, capture speed, and the density of the patterned cells. The optimized device can achieve a capture efficiency of up to 100% and single-cell capture efficiency of up to 95%. This device offers 200 trap units in an area of 1 mm2, which enables 100 single cells to be observed simultaneously using a microscope with a 20× objective lens. One thousand cells can be trapped sequentially within 2 min; this is faster than the values obtained with previously reported devices. Furthermore, the cells can also be recovered by reversely infusing solutions. The structure can be easily extended to a large scale, and a patterned array with 32,000 trap sites was accomplished on a single chip. This device can be a powerful tool for high-throughput single-cell analysis, cell heterogeneity investigation, and drug screening.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献