The Study of the Influence of ZrO2 Precursor Type and the Temperature of Annealing on the Crystallization of the Tetragonal Polymorph of ZrO2 in Zirconia-Silica Gels

Author:

Adamczyk AnnaORCID

Abstract

Materials of the ZrO2-SiO2 system were obtained by the sol-gel method applying two different types of ZrO2 precursors: zirconium (IV) n-propoxide Zr(OC3H7)4 and zirconium (IV) acetate Zr(OOC2H3)4 (organic acetic acid salt) while commonly used tetraethoxysilane TEOS was selected as SiO2 introducing one. ZrO2 concentration in synthesized samples varied from 20% to 50% (mol.). After drying for 28 days, all gels were annealed at 500 °C, 1000 °C, and 1200 °C in air. FTIR spectroscopy together with XRD diffraction was selected as the two main structure research methods. SEM microscopy was applied to analyze the local chemical compositions of samples and to observe the morphology of gels’ surfaces. The analysis of FTIR spectra and XRD diffraction patterns allowed us to recognize different ZrO2 polymorphs which appeared in the samples depending strongly as well on ZrO2 precursor type as on the temperature of annealing. Samples synthesized by using the zirconium (IV) n-propoxide contained both cubic and tetragonal zirconia phases in general but showed the tendency of the increasing t-ZrO2 content in gels richer in ZrO2 and heated up to 1200 °C. However, in materials obtained applying zirconium (IV) acetate, the first detected at 500 °C phase was t-ZrO2 which was then conversing to m-ZrO2 form with the increasing temperature in case of samples rich in ZrO2. Meanwhile, t-ZrO2 was the predominant phase in samples of the lower content of ZrO2 but annealed at higher temperatures. By the analysis of changes in band profiles and positions, one can draw conclusions that the structure of studied samples is mostly built up of an amorphous silica matrix, in which different types of zirconia polymorphs create their own crystal lattice. The presence of the particular polymorph depends strongly on the type of zirconia precursor and the temperature of annealing.

Funder

Ministry of Education and Science for the AGH University of Science and Technology in Kraków

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3