Assessment of Glucocorticoid Removal by UVA/Chlorination and Ozonation: Performance Comparison in Kinetics, Degradation Pathway, and Toxicity

Author:

Zhang Ai,Jiang Xinyuan,Wang Qiancheng,Hao Siyu,Zhu Dahai,Wang Jie,Wang Ce,Liu Mingyan

Abstract

Glucocorticoids (GCs) have drawn great concern due to widespread contamination in the environment and application in treating COVID-19. This work aimed to compare the performance of UVA/chlorination and ozonation on GC removal in terms of removal efficiency, degradation pathway, and toxicity change, with fluocinolone acetonide (FA), triamcinolone acetonide (TA), and clobetasol propionate (CP) as target compounds. The results showed that both UVA/chlorination and ozonation could degrade GCs. Compared with UVA/chlorination (removal efficiency of 89% for FA, 86% for TA, and 90% for CP at 7 h), ozonation (removal efficiency of 90% for FA, 96% for TA, and 98% for CP at 15 min) was more effective in GC removal. Photodegradation contributed most to GC removal during UVA/chlorination, while O3 molecules were the main functional species during ozonation. H-abstraction, dechlorination, carbon–carbon bond cleavage, and ester hydrolysis were proposed for both UVA/chlorination and ozonation based on the identification of intermediates. However, ozone tended to attack C=C double bonds, resulting in the cracked benzene ring of GCs, while chlorine was more likely to attack alcohol and ketone groups. Although most GCs were removed during ozonation and UVA/chlorination, their acute toxicities slightly declined. Compared with UVA/chlorination, ozonation was more effective in toxicity reduction.

Funder

Shanghai Chen-Guang Program

Natural Science Foundation of Shanghai

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3