A Comparative Study of Cavitation Characteristics of Nano-Fluid and Deionized Water in Micro-Channels

Author:

Li Tao,Liu Bin,Zhou Jinzhi,Xi Wenxuan,Huai Xiulan,Zhang HangORCID

Abstract

Hydrodynamic cavitation has been widely applied in micro-fluidic systems. Cavitating flow characteristics are closely related to the fluid properties. In this paper, the cavitation characteristics of Cu nano-fluid in micro-channels were numerically investigated and compared with those of the deionized (DI) water. The mathematical model was verified by comparing the numerical results with the experiment observation. The curved orifice (R = 0.3 mm) was found to have the highest efficiencies of cavitation for both fluids. With the increase of inlet pressure, cavitating jet lengths of the two fluids significantly increased. While, the cavitating jet length of the nano-fluid was shorter than that of the DI water at the same inlet pressure. The cavitation inception number of the DI water and nano-fluid were approximately 0.061 and 0.039, respectively. The results indicate that the nano-particles played negative effects on the cavitation inception. In addition, with the decrease of outlet pressure, the cavitation strength gradually increased and the mass flow rate remained nearly unchanged at the same time.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3