Nitric Oxide and a Conditioned Medium Affect the Hematopoietic Development in a Microfluidic Mouse Embryonic Stem Cell/OP9 Co-Cultivation System

Author:

Sato KaeORCID,Maeda Momoko,Kamata Eriko,Ishii Sayaka,Yanagisawa Kanako,Kitajima Kenji,Hara Takahiko

Abstract

A microfluidic co-culture system, consisting of mouse embryonic stem cells (mESCs)/OP9 cells, was evaluated as a platform for studying hematopoietic differentiation mechanisms in vitro. mESC differentiation into blood cells was achieved in a microchannel that had the minimum size necessary to culture cells. The number of generated blood cells increased or decreased based on the nitric oxide (NO) donor or inhibitor used. Conditioned medium from OP9 cell cultures also promoted an increase in the number of blood cells. The number of generated blood cells under normal medium flow conditions was lower than that observed under the static condition. However, when using a conditioned medium, the number of generated blood cells under flow conditions was the same as that observed under the static condition. We conclude that secreted molecules from OP9 cells have a large influence on the differentiation of mESCs into blood cells. This is the first report of a microfluidic mESC/OP9 co-culture system that can contribute to highly detailed hematopoietic research studies by mimicking the cellular environment.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3