Modeling Compressive Strength of Eco-Friendly Volcanic Ash Mortar Using Artificial Neural Networking

Author:

Amin Muhammad NasirORCID,Javed Muhammad FaisalORCID,Khan KaffayatullahORCID,Shalabi Faisal I.ORCID,Qadir Muhammad Ghulam

Abstract

Forecasting the compressive strength of concrete is a complex task owing to the interactions among concrete ingredients. In addition, an important characteristic of the concrete failure surface is its six-fold symmetry. In this study, an artificial neural network (ANN) and adaptive neuro fuzzy interface system (ANFIS) were employed to model the compressive strength of natural volcanic ash mortar (VAM) by using the six-fold symmetry of concrete failure. The modeling was correlated with four parameters. To train and test the projected models, data for more than 150 samples were collected from the literature. Furthermore, mortar samples with varying proportions of volcanic ash were prepared in the laboratory and tested, and the results were used to validate the models. The performance of the developed models was assessed using numerous statistical measures. The results show that both the ANN and ANFIS models accurately predict the compressive strength of VAM with R-square above 0.9 and lower error statistics. The permutation feature analysis confirmed that the age of specimens affects the strength of VAM the most, followed by the water-to-cement ratio, curing temperature, and percentage of volcanic ash.

Funder

King Faisal University

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3