Abstract
Optimization problems are ubiquitous nowadays. Many times, their corresponding computational models necessarily leave out of consideration several characteristics and features of the real world, so trying to obtain the optimum solution can not be enough for a problem solving point of view. The aim of this paper is to illustrate the role of metaheuristics as solutions’ generators in a basic problem solving framework. Metaheuristics become relevant in two modes: firstly because every run (in the case of population based techniques) allows to obtain a set of potentially good solutions, and secondly, if a reference solution is available, one can set up a new optimization problem that allows to obtain solutions with similar quality in the objectives space but maximally different structure in the design space. Once a set of solutions is obtained, an example of an a posteriori analysis to rank them according with decision maker’s preferences is shown. All the problem solving framework steps, emphasizing the role of metaheuristics are illustrated with a dynamic version of the tourist trip design problem (for the first mode), and with a perishable food distribution problem (for the second one). These examples clearly show the benefits of the problem solving framework proposed. The potential role of the symmetry concept is also explored.
Funder
Ministerio de Ciencia e Innovación
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献