Abstract
This study proposes a data-driven adaptive filtering method for the fault diagnosis (DDAF-FD) of discrete-time nonlinear systems and provides a simultaneous online estimation of actuator and sensor faults. First, dynamic linearization was adopted to transform the nonlinear system into a quasi-linear model, which facilitated accurate modeling of the nonlinear system. Second, a data-driven adaptive fault diagnosis method was designed under the framework of data-driven filtering and the recursive least-squares algorithm using system I/O data only, and accurate real-time estimation of two fault factors was achieved. In addition, the simulation results demonstrate the effectiveness of the proposed method. The stability was verified via the Lyapunov method.
Funder
National Natural Science Foundation (NNSF) of China
Beijing Municipal Natural Science Foundation
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献