Another Antimagic Conjecture

Author:

Simanjuntak RinoviaORCID,Nadeak TamaroORCID,Yasin FuadORCID,Wijaya KristianaORCID,Hinding NurdinORCID,Sugeng Kiki AriyantiORCID

Abstract

An antimagic labeling of a graph G is a bijection f:E(G)→{1,…,|E(G)|} such that the weights w(x)=∑y∼xf(y) distinguish all vertices. A well-known conjecture of Hartsfield and Ringel (1990) is that every connected graph other than K2 admits an antimagic labeling. For a set of distances D, a D-antimagic labeling of a graph G is a bijection f:V(G)→{1,…,|V(G)|} such that the weightω(x)=∑y∈ND(x)f(y) is distinct for each vertex x, where ND(x)={y∈V(G)|d(x,y)∈D} is the D-neigbourhood set of a vertex x. If ND(x)=r, for every vertex x in G, a graph G is said to be (D,r)-regular. In this paper, we conjecture that a graph admits a D-antimagic labeling if and only if it does not contain two vertices having the same D-neighborhood set. We also provide evidence that the conjecture is true. We present computational results that, for D={1}, all graphs of order up to 8 concur with the conjecture. We prove that the set of (D,r)-regular D-antimagic graphs is closed under union. We provide examples of disjoint union of symmetric (D,r)-regular that are D-antimagic and examples of disjoint union of non-symmetric non-(D,r)-regular graphs that are D-antimagic. Furthermore, lastly, we show that it is possible to obtain a D-antimagic graph from a previously known distance antimagic graph.

Funder

Program Penelitian Kolaborasi Indonesia

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distance antimagic labeling of circulant graphs;AIMS Mathematics;2024

2. Generalized Arithmetic Staircase Graphs and Their Total Edge Irregularity Strengths;Symmetry;2022-09-06

3. Distance Antimagic Product Graphs;Symmetry;2022-07-09

4. Multi-bridge graphs are anti-magic;Electronic Journal of Graph Theory and Applications;2022-04-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3