Abstract
When working with Markov chains, especially if they are of order greater than one, it is often necessary to evaluate the respective contribution of each lag of the variable under study on the present. This is particularly true when using the Mixture Transition Distribution model to approximate the true fully parameterized Markov chain. Even if it is possible to evaluate each transition matrix using a standard association measure, these measures do not allow taking into account all the available information. Therefore, in this paper, we introduce a new class of so-called "predictive power" measures for transition matrices. These measures address the shortcomings of traditional association measures, so as to allow better estimation of high-order models.
Funder
Swiss National Science Foundation
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献