Weak Feature Extraction of Local Gear Damage Based on Underdamped Asymmetric Periodic Potential Stochastic Resonance

Author:

Hu Bingbing,Zhang Shuai,Peng Ming,Liu JieORCID,Liu Shanhui,Zhang Chunlin

Abstract

The enhancement of the detection of weak signals against a strong noise background is a key problem in local gear fault diagnosis. Because the periodic impact signal generated by local gear damage is often modulated by high-frequency components, fault information is submerged in its envelope signal when demodulating the fault signal. However, the traditional bistable stochastic resonance (BSR) system cannot accurately match the asymmetric characteristics of the envelope signal because of its symmetrical potential well, which weakens the detection performance for weak faults. In order to overcome this problem, a novel method based on underdamped asymmetric periodic potential stochastic resonance (UAPPSR) is proposed to enhance the weak feature extraction of the local gear damage. The main advantage of this method is that it can better match the characteristics of the envelope signal by using the asymmetry of its potential well in the UAPPSR system and it can effectively enhance the extraction effect of periodic impact signals. Furthermore, the proposed method enjoys a good anti-noise capability and robustness and can strengthen weak fault characteristics under different noise levels. Thirdly, by reasonably adjusting the system parameters of the UAPPSR, the effective detection of input signals with different frequencies can be realized. Numerical simulations and experimental tests are performed on a gear with a local root crack, and the vibration signals are analyzed to validate the effectiveness of the proposed method. The comparison results show that the proposed method possesses a better resonance output effect and is more suitable for weak fault feature extraction under a strong noise background.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference34 articles.

1. Theory of Gearing: Kinematics, Geometry, and Synthesis;Radzevich,2018

2. Study of Machining of Gears with Regular and Modified Outline Using CNC Machine Tools

3. Analysis of modification of spur gear profile;Gołębski;Teh. Vjesn.,2018

4. Diagnosis of the operational gear wheel wear;Gołębski;Teh. Vjesn.,2019

5. Condition monitoring and fault diagnosis of planetary gearboxes: A review

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3