Abstract
In this paper, we consider convex multiobjective optimization problems with equality and inequality constraints in real Banach space. We establish saddle point necessary and sufficient Pareto optimality conditions for considered problems under some constraint qualifications. These results are motivated by the symmetric results obtained in the recent article by Cobos Sánchez et al. in 2021 on Pareto optimality for multiobjective optimization problems of continuous linear operators. The discussions in this paper are also related to second order symmetric duality for nonlinear multiobjective mixed integer programs for arbitrary cones due to Mishra and Wang in 2005. Further, we establish Karush–Kuhn–Tucker optimality conditions using saddle point optimality conditions for the differentiable cases and present some examples to illustrate our results. The study in this article can also be seen and extended as symmetric results of necessary and sufficient optimality conditions for vector equilibrium problems on Hadamard manifolds by Ruiz-Garzón et al. in 2019.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference28 articles.
1. Multiobjective Optimization: Interactive and Evolutionary Approaches;Branke,2008
2. Nonlinear Multiobjective Optimization;Miettinen,1999
3. On q-steepest descent method for unconstrained multiobjective optimization problems;Lai;AIMS Math.,2020
4. Optimal covering points and curves
5. Theory of Multiobjective Optimization;Sawaragi,1985
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献