Securing Secrets in Cyber-Physical Systems: A Cutting-Edge Privacy Approach with Consortium Blockchain

Author:

Ali Aitizaz1ORCID,Al-rimy Bander Ali Saleh2,Almazroi Abdulwahab Ali3,Alsubaei Faisal S.4ORCID,Almazroi Abdulaleem Ali5,Saeed Faisal6ORCID

Affiliation:

1. School of IT, UNITAR International University, Petaling Jaya 47301, Malaysia

2. Department of Computer Science, Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia

3. Department of Information Technology, College of Computing and Information Technology at Khulais, University of Jeddah, Jeddah 23218, Saudi Arabia

4. Department of Cybersecurity, College of Computer Science and Engineering, University of Jeddah, Jeddah 23218, Saudi Arabia

5. Department of Information Technology, Faculty of Computing and Information Technology in Rabigh, King Abdulaziz University, Rabigh 21911, Saudi Arabia

6. School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK

Abstract

In the era of interconnected and intelligent cyber-physical systems, preserving privacy has become a paramount concern. This paper aims a groundbreaking proof-of-concept (PoC) design that leverages consortium blockchain technology to address privacy challenges in cyber-physical systems (CPSs). The proposed design introduces a novel approach to safeguarding sensitive information and ensuring data integrity while maintaining a high level of trust among stakeholders. By harnessing the power of consortium blockchain, the design establishes a decentralized and tamper-resistant framework for privacy preservation. However, ensuring the security and privacy of sensitive information within CPSs poses significant challenges. This paper proposes a cutting-edge privacy approach that leverages consortium blockchain technology to secure secrets in CPSs. Consortium blockchain, with its permissioned nature, provides a trusted framework for governing the network and validating transactions. By employing consortium blockchain, secrets in CPSs can be securely stored, shared, and accessed by authorized entities only, mitigating the risks of unauthorized access and data breaches. The proposed approach offers enhanced security, privacy preservation, increased trust and accountability, as well as interoperability and scalability. This paper aims to address the limitations of traditional security mechanisms in CPSs and harness the potential of consortium blockchain to revolutionize the management of secrets, contributing to the advancement of CPS security and privacy. The effectiveness of the design is demonstrated through extensive simulations and performance evaluations. The results indicate that the proposed approach offers significant advancements in privacy protection, paving the way for secure and trustworthy cyber-physical systems in various domains.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3