Adaptive Quasi-Unsupervised Detection of Smoke Plume by LiDAR

Author:

Rossi RiccardoORCID,Gelfusa MichelaORCID,Malizia AndreaORCID,Gaudio PasqualinoORCID

Abstract

The early detection of fire is one of the possible applications of LiDAR techniques. The smoke generated by a fire is mainly compounded of CO2, H2O, particulate, and other combustion products, which involve the local variation of the scattering of the electromagnetic wave at specific wavelengths. The increases of the backscattering coefficient are transduced in peaks on the signal of the backscattering power recorded by the LiDAR system, located exactly where the smoke plume is, allowing not only the detection of a fire but also its localization. The signal processing of the LiDAR signals is critical in the determination of the performances of the fire detection. It is important that the sensitivity of the apparatus is high enough but also that the number of false alarms is small, in order to avoid the trigger of useless and expensive countermeasures. In this work, a new analysis method, based on an adaptive quasi-unsupervised approach was used to ensure that the algorithm is continuously updated to the boundary conditions of the system, such as the weather and experimental apparatus issues. The method has been tested on an experimental campaign of 227 pulses and the performances have been analyzed in terms of sensitivity and specificity.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3