A Critical Overview of the Impact of Nanoparticles in Ester Fluid for Power Transformers

Author:

Amalanathan Arputhasamy Joseph1,Sarathi Ramanujam2ORCID,Zdanowski Maciej3ORCID

Affiliation:

1. Department of High Voltage Engineering, University of Applied Sciences, 02763 Zittau, Germany

2. Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India

3. Department of Electric Power Engineering and Renewable Energy, Faculty of Electrical Engineering, Automatic Control and Computer Science, Opole University of Technology, Prószkowska 76, 45-758 Opole, Poland

Abstract

This paper examines the impact of various nanoparticles on ester fluids with a special focus on their usage towards power transformers. The precautionary measures to be considered on the nanofluids such as preparation methodologies with an appropriate surfactant and its stability is well elucidated. The electrical double layer (EDL) formation around the nanoparticles on its diffusion in the insulating fluid is explained by its different layers away from the particle surface. The partial discharge of ester nanofluids with different detection methods is elaborated on its comparison with conventional IEC 60270 measurements. The field configurations on ester-nanofluids govern the breakdown mechanism with variations in the streamer patterns. The equation of relaxation time towards breakdown is valid only when it is lower than the initiation time for streamers. The flow charges induced at the solid/liquid interface inside transformers depends on the structure of the nanofluid and the condition of pressboard/paper insulation. The impact of different concentrations of nanoparticles on ester nanofluids observes a change in its flow behaviour affecting the streaming current. The permittivity of nanofluid depends on the polarization of nanoparticles where the Clausius-Mossotti equation governing this mechanism is explained towards ester-nanofluids. The viscosity of nanofluids observed no significant variation whereas the other physio-chemical properties such as flash point, interfacial tension, and oxidation stability improved depending on the type of nanoparticle. The addition of metal-oxide nanoparticles on ester fluids increases thermal conductivity with different models proposed based on the structure and shape of a nanoparticle. The impact of ageing on nanofluids observes an instability over a longer ageing duration with specific nanoparticles which should be better understood before implementing them in real-time power transformers.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference169 articles.

1. Classification of transformers family;Sanchez;Transform. Mag.,2014

2. Electrical insulating liquid: A review;Mahanta;J. Adv. Dielectr.,2017

3. Not all mineral oils are equal;Lukenda;Transform. Mag.,2019

4. Concentrations and risks of polychlorinated biphenyls (PCBs) in transformer oils and the environment of a power plant in the Niger Delta, Nigeria;Aganbi;Toxicol. Rep.,2019

5. On the use of silicone liquids in power transformers;Borin;Russ. Electr. Eng.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3