Green Anisole Solvent-Based Synthesis and Deposition of Phthalocyanine Dopant-Free Hole-Transport Materials for Perovskite Solar Cells

Author:

Podapangi Suresh K.1,Mancini Laura2,Xu Jie1,Reddy Sathy Harshavardhan1ORCID,Di Carlo Aldo13,Brown Thomas M.1,Zanotti Gloria2ORCID

Affiliation:

1. C.H.O.S.E. (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome-Tor Vergata, via del Politecnico 1, 00133 Rome, Italy

2. Istituto di Struttura della Materia—CNR (ISM-CNR), Area della Ricerca Roma 1, Via Salaria km 29.300, 00015 Monterotondo, Italy

3. Istituto di Struttura della Materia—CNR (ISM-CNR), Area della Ricerca di Roma Tor Vergata, Via del Fosso del Cavaliere 100, 00133 Rome, Italy

Abstract

Perovskite Solar Cells (PSCs) have attracted attention due to their low cost, easy solution processability, high efficiency, and scalability. However, the benchmark expensive hole transport material (HTM) 2,2′,7,7′-tetrakis[N, N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (Spiro-MeOTAD), which is traditionally solution-processed with toxic solvents such as chlorobenzene (CB), dichlorobenzene (DCB), or toluene, is a bottleneck. To address this issue, this work investigates the implementation of Zn(II), Cu(II), or Co(II) tetra-tert-butylphthalocyanines (TBU4-Cu, TBU4-Zn, TBU4-Co), established macrocyclic derivatives whose synthesis and processing inside the devices have been redesigned to be more environmentally sustainable and cost-effective by substituting conventional solvents with greener alternatives such as anisole, propane-1,2-diol, and their mixture, as dopant-free HTMs in planar n-i-p PSCs. The anisole-processed HTMs provided power conversion efficiencies (PCE) up to 12.27% for TBU4-Cu and 11.73% for TBU4-Zn, with better photovoltaic parameters than the corresponding cells made with chlorobenzene for which the best results obtained were, respectively, 12.22% and 10.81%.

Funder

MIUR

Lazio Region through ISIS@MACH (IR approved by Giunta Regionale

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3