TGA-FTIR Analysis of Biomass Samples Based on the Thermal Decomposition Behavior of Hemicellulose, Cellulose, and Lignin

Author:

Apaydın Varol Esin1ORCID,Mutlu Ülker1

Affiliation:

1. Department of Chemical Engineering, Faculty of Engineering, Eskisehir Technical University, 26555 Eskişehir, Turkey

Abstract

The slow pyrolysis characteristics of lignocellulosic biomass and its three major components via a Thermogravimetric Analyzer coupled with a Fourier Transform Infrared Spectrometer (TGA-FTIR) was studied. Different compositions and ratios of cellulose, hemicellulose, and lignin, olive pomace, sunflower waste, and pinecone were selected. The main decomposition temperature ranges of xylose (hemicellulose) and lignin showed a broad range between 173–690 and 170–835 °C, respectively, whereas that of cellulose was detected to be 291–395 °C. All biomass samples presented a three-stage pyrolysis model that is explained by the superposition of the weight losses of major components. Simultaneous FTIR analysis of the evolved gases demonstrated that the greater the cellulose and hemicellulose contents, the higher the CO and CO2 concentrations. Chemical kinetics were computed with the Coats–Redfern model. The activation energy required for the initiation of the thermal decomposition of biomass samples is in the range of 53–94 kJ/mol. Moreover, the product yields of all samples were determined via laboratory-scale pyrolysis. Pyrolytic oil and char yields were determined to be between 18.9–32.4 wt.% and 26.6–31.2 wt.%, respectively, at 550 °C final temperature for the biomass samples. It is concluded that the bio-oil yield was not only controlled by the cellulose content but also affected by the presence of n-hexane soluble (oil) fraction as well as inorganics.

Funder

Anadolu University Scientific Research Council

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3