The Evaluation of Torrefaction Efficiency for Lignocellulosic Materials Combined with Mixed Solid Wastes

Author:

Ivanovski Maja1,Goričanec Darko1,Urbancl Danijela1

Affiliation:

1. Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia

Abstract

The paper presents the results of research aimed at evaluating the possibility of using selected biomass wastes to produce solid biofuels. In this work, the thermochemical properties of two lignocellulosic biomasses, namely, miscantshus (Miscanthus × Giganteus) and hops (Humulus lupulus), and non-lignocellulosic biomass, namely, municipal solid waste, and their mixtures (micanthus + municipal solid waste and hops + municipal solid waste) were studied using the torrefaction process as the main method for investigation. The effects of various torrefaction temperatures (250, 300, and 350 °C) and times (30 and 60 min) were evaluated. Proximate and ultimate analyses were performed on the torrefied samples. The following can be stated: as the torrefaction temperature and time increased, mass and energy yields decreased while the higher heating values (HHVs) and fuel ratios (FRs) increased, together with carbon contents (C). In addition, energy on return investment (EROI) was studied; the maximum EROI of 28 was achieved for MSW biochar at 250 °C for 30 min. The results of studying greenhouse gas emissions (GHGs) showed a reduction of around 88% when using torrefied biochar as a substitute for coal. In sum, this study shows that torrefaction pre-treatment can improve the physicochemical properties of raw biomasses to a level comparable with coal, and could be helpful in better understanding the conversion of those biomasses into a valuable, solid biofuel.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference53 articles.

1. Assessment of Measurement Methods to Characterize the Producer Gas from Biomass Gasification with Steam in a Fluidized Bed;Pongratz;Biomass Bioenergy,2022

2. European Commission European (2023, March 25). Green Deal. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en.

3. European Commission European (2023, March 25). Climate Law. Available online: https://www.europarl.europa.eu/news/en/press-room/20210621IPR06627/eu-climate-law-meps-confirm-deal-on-climate-neutrality-by-2050.

4. Repurposing Washingtonia Filifera Petiole and Sterculia Foetida Follicle Waste Biomass for Renewable Energy through Torrefaction;Lin;Energy,2021

5. District Cooling System via Renewable Energy Sources: A Review;Inayat;Renew. Sustain. Energy Rev.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3