Investigations on Material Loads during Grinding by Speckle Photography

Author:

Tausendfreund Andreas,Borchers Florian,Kohls Ewald,Kuschel Sven,Stöbener Dirk,Heinzel Carsten,Fischer AndreasORCID

Abstract

The knowledge of the loads occurring during a manufacturing process (e.g., grinding) and of the modifications remaining in the material is used in the concept of process signatures to optimize the manufacturing process and compare it with others (e.g., laser processing). The prerequisite for creating a process signature is that the loads can be characterized during the running process. Due to the rough process conditions, until now there is no in-process technique to measure the loads in the form of displacements and strains in the machined boundary zone. For this reason, the suitability of speckle photography is demonstrated for in-process measurements of material loads in a grinding process without cooling lubricant and the measurement results are compared with finite element method (FEM) simulations. As working hypothesis for the simulation it is assumed, that dry grinding is a purely thermally driven process. Despite the approximation by a purely thermal model with a constant heat source, the measured displacements differ only by a maximum of approximately 20% from the simulations. In particular, the strain measurements in feed speed direction are in good agreement with the simulation and support the thesis, that the dry grinding conditions used here lead to a primarily thermally affecting process.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3