Magnetic Interconnects Based on Composite Multiferroics

Author:

Khitun Alexander

Abstract

The development of magnetic logic devices dictates a need for a novel type of interconnect for magnetic signal transmission. Fast signal damping is one of the problems which drastically differs from conventional electric technology. Here, we describe a magnetic interconnect based on a composite multiferroic comprising piezoelectric and magnetostrictive materials. Internal signal amplification is the main reason for using multiferroic material, where a portion of energy can be transferred from electric to magnetic domains via stress-mediated coupling. The utilization of composite multiferroics consisting of piezoelectric and magnetostrictive materials offers flexibility for the separate adjustment of electric and magnetic characteristics. The structure of the proposed interconnect resembles a parallel plate capacitor filled with a piezoelectric, where one of the plates comprises a magnetoelastic material. An electric field applied across the plates of the capacitor produces stress, which, in turn, affects the magnetic properties of the magnetostrictive material. The charging of the capacitor from one edge results in the charge diffusion accompanied by the magnetization change in the magnetostrictive layer. This enables the amplitude of the magnetic signal to remain constant during the propagation. The operation of the proposed interconnects is illustrated by numerical modeling. The model is based on the Landau–Lifshitz–Gilbert equation with the electric field-dependent anisotropy term included. A variety of magnetic logic devices and architectures can benefit from the proposed interconnects, as they provide reliable and low-energy-consuming data transmission. According to the estimates, the group velocity of magnetic signals may be up to 105 m/s with energy dissipation less than 10−18 J per bit per 100 nm. The physical limits and practical challenges of the proposed approach are also discussed.

Funder

the National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference28 articles.

1. Semiconductors, I.T.R. (2011, January 07). Chapter PIDS. Available online: http://www.itrs.net.

2. Room temperature magnetic quantum cellular automata;Science,2000

3. Proposal for an all-spin logic device with built-in memory;Nat. Nanotechnol.,2010

4. Non-Volatile Magnonic Logic Circuits Engineering;J. Appl. Phys.,2011

5. Proposal of a Spin Torque Majority Gate Logic;IEEE Electron Device Lett.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3