Engineering Atomic-to-Nano Scale Structural Homogeneity towards High Corrosion Resistance of Amorphous Magnesium-Based Alloys

Author:

Qin Yuan,Zhang Wentao,Li Kanghua,Fu Shu,Lou Yu,Liu Sinan,Ge Jiacheng,Ying Huiqiang,Liu Wei-DiORCID,Zuo Xiaobing,Shen Jun,Wei Shao-Chong,Hahn Horst,Ren YangORCID,Wu Zhenduo,Wang Xun-Li,Zhu HeORCID,Lan SiORCID

Abstract

Magnesium-based amorphous alloys have aroused broad interest in being applied in marine use due to their merits of lightweight and high strength. Yet, the poor corrosion resistance to chloride-containing seawater has hindered their practical applications. Herein, we propose a new strategy to improve the chloride corrosion resistance of amorphous Mg65Cu15Ag10Gd10 alloys by engineering atomic-to-nano scale structural homogeneity, which is implemented by heating the material to the critical temperature of the liquid–liquid transition. By using various electrochemical, microscopic, and spectroscopic characterization methods, we reveal that the liquid–liquid transition can rearrange the local structural units in the amorphous structure, slightly decreasing the alloy structure’s homogeneity, accelerate the formation of protective passivation film, and, therefore, increase the corrosion resistance. Our study has demonstrated the strong coupling between an amorphous structure and corrosion behavior, which is available for optimizing corrosion-resistant alloys.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Shenzhen Science and Technology Innovation Commission

Fundamental Research Funds for the Central Universities

Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science

DOE Office of Science by Argonne National Laboratory

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3