Author:
Li Manna,Chen Zhaofeng,Yang Lixia,Li Jiayu,Xu Jiang,Chen Chao,Wu Qiong,Yang Mengmeng,Liu Tianlong
Abstract
A GO (graphene oxide)/ZnO/Cu2O antibacterial coating was successfully sprayed on the ultrafine glass fibers using room temperature hydrothermal synthesis and air spraying techniques. The microstructures of the antibacterial coating were characterized, and the results showed that the Cu2ONPs (nano particles)/ZnONPs were uniformly dispersed on the surface of GO. Then, the antibacterial properties of the GO/ZnO/Cu2O (GZC) antibacterial coating were evaluated using the disc diffusion test. It was found that the coating exhibits excellent antibacterial properties and stability against E. coli and S. aureus, and the antibacterial rate of each group of antibacterial powder against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) was 100%. To explore the antibacterial mechanism of the GZC antibacterial powder on the ultrafine glass fibers based on the photocatalysis/oxidative stress method, the photoelectric coupling synergistic effect between GZC antibacterial coating was analyzed deeply. The results all showed that the photochemical activity of GZC antibacterial powder was significantly improved compared with pure component materials. The enhancement of its photochemical activity is beneficial to the generation of ROS (including hydroxyl radicals, superoxide anion radicals, etc.), which further confirms the speculation of the photocatalytic/oxidative stress mechanism.
Funder
Science and Technology International Cooperation Project of Jiangsu
National Natural Science Foundation of China
Priority Academic Program Development of Jiangsu Higher Education Institutions
Subject
General Materials Science,General Chemical Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献