Study of Degradation Mechanisms of Strength and Thermal-Physical Properties of Nitride and Carbide Ceramics—Promising Materials for Nuclear Energy

Author:

Berguzinov Askhat,Kozlovskiy ArtemORCID,Kenzhina Inesh,Shlimas Dmitriy I.ORCID

Abstract

The dependences of changes in the strength properties of nitride and carbide ceramics under high temperature irradiation with Kr15+ and Xe22+ heavy ions at irradiation doses of 1012–1015 ions/cm2 are presented in this work. The irradiation was chosen to simulate radiation damage processes that are closest to the real conditions of reactor tests in operating modes of increased temperatures. Polycrystalline ceramics based on AlN, Si3N4 nitrides, and SiC carbides were chosen as objects of research, as they have great prospects for use as a basis for structural materials for high-temperature nuclear reactors, as well as materials for nuclear waste disposal. During these studies the effect of radiation damage caused by irradiation with different fluences on the change in mechanical strength and hardness were determined, and the mechanisms causing these changes depending on the type of irradiated materials were proposed. The novelty of this study is in the results obtained determining the stability of the strength and thermophysical parameters of nitride and carbide ceramics exposed to high-temperature irradiation, which made it possible to determine the main stages and mechanisms for changing these parameters depending on the accumulated radiation damage. The relevance of this study consists not only in obtaining new data on the properties of structural materials exposed to ionizing radiation, but also in the possibility of determining the mechanisms of radiation damage in ceramics.

Funder

Ministry of Education and Science of the Republic of Kazakhstan

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3